

Strategien zur Steuerung der Stickstoffdüngung im Hinblick auf das klimatische Risiko einer Frühjahrstrockenheit und den wirtschaftlichen Kontext der Düngemittelpreise

Erscheinungsdatum: 25/02/2025

Autor: Thomas MUNSCH
Aus dem Französischen übersetzt von:

Johanna Bodendörfer

> 17 AZOCLIME 2024 BOLLWILLER N°157831

→Kontext

Die Niederschläge während der Düngeperiode von Weizen werden immer unvorhersehbarer, und die Sorge, keine günstigen Bedingungen zu finden, veranlasst einige Landwirte dazu, weniger zu splitten und die Düngung stark vorzuverlegen. Die Auswirkungen dieser sicherheitsorientierten Strategien auf die Effizienz der Stickstoffnutzung sind weitgehend bekannt und haben uns in der Vergangenheit dazu veranlasst, eine stärkere und spätere Aufteilung zu empfehlen. Diese historischen Schlussfolgerungen wurden jedoch in Kontexten gezogen, in denen die Frühjahrsniederschläge nur wenig limitierend waren. Längere Trockenperioden im Frühjahr mit vereinzelten Regenfällen oder eine Konzentration der Niederschläge auf den Herbst scheinen jedoch ein zunehmend übliches Klima darzustellen.

Jüngste Studien, die die Herausforderungen bei der vollständigen Steuerung mit dem Tool CHN-conduite untersuchen, zeigen, dass ein gutes Management des Klimarisikos ein entscheidender Erfolgsfaktor für eine auf spätere Teilgaben basierende Strategie ist – und dass dieses Risikomanagement regelmäßig an seine Grenzen stößt. Die Wahl der Risikoschwelle ist somit ausschlaggebend für den Erfolg der Strategie, und das Tool CHN-conduite reagiert sehr sensibel darauf.

Vor dem Hintergrund des aktuellen Klimas und um sich besser und schneller an zukünftige Bedingungen anpassen zu können, erscheint es notwendig, unsere Referenzen hinsichtlich der Auswirkungen (i) vorgezogener Gaben und (ii) späterer Maßnahmen (unter guten sowie ungünstigen Bedingungen für die Nährstoffverwertung) zu aktualisieren. Ziel ist es, optimierte Risikoschwellen auf Parzellenebene festlegen zu können.

Darüber hinaus könnten die wirtschaftlichen Rahmenbedingungen (volatile Preise für Dünger und Getreide) sowie gesetzliche Vorgaben (Green Deal) uns dazu veranlassen, die Stickstoffgaben auf bestimmten Weizenflächen zu reduzieren. Die Herausforderungen im Zusammenhang mit reduzierten Stickstoffgaben sind durch zahlreiche historische Versuche mit Ertragsreaktionskurven auf Stickstoff bekannt. Die getesteten Varianten beruhen jedoch fast ausschließlich auf einer Reduktion der Gabe zum Stadium "1 cm Ährchen". Heute ist es notwendig, die Auswirkungen einer Reduktion der Düngemenge in verschiedenen phänologischen Stadien zu bewerten, um das/die Stadium/ien zu identifizieren, das/die am besten geeignet ist/sind, eine reduzierte Stickstoffgabe im jeweiligen bodenklimatischen Kontext zu verkraften.

* (Tool von Arvalis zur dynamischen Modellierung des Stickstoffbedarfs von Weizen)

→Ziel

- Gewinnung von Daten zur Effizienz der Stickstoffnutzung unter verschiedenen Fraktionierungskontexten und unterschiedlicher Exposition gegenüber Klimarisiken.
- Verbesserung der Schätzung der Stickstoffaufnahme durch die Kultur mit CHN

- Vorschlag eines an die Parzelle angepassten Klimarisikomanagements im Tool zur integralen Steuerung der Stickstoffdüngung CHN-conduite
- Fortsetzung der Bewertung des CHN-conduite-Tools
- Verständnis der Wechselwirkungen zwischen phänologischem Stadium, das eine Dosisreduktion verträgt, und dem Bodenklima

→Beschreibung des Versuchsfeldes

- Nicht bewässert um den Einfluss des Klimas auf die Stickstoffverwertung nicht zu beeinflussen.

- Petite région : Piémont 68

- Boden: AL0036002 : Tiefgründiger toniger Lösslehm

 - Versuchsanordnung: Versuch in 4 Blöcken, verteilt auf dem Feld des Landwirts. Microparzelle 8m x 2m (16m²)

- Sorte: Fructidor

- Vorfrucht : Körnermais

- Nmin-Gehalt zum Vegetationsbeginn: 77 Kg/ha

→Getestete Modalitäten

Liste der Versuchsmodalitäten 17AZOCLIME 2024

			Stadium und Dosierungen der Stickstoffgab				
Modul	Modalität	Düngestrategie	Z21	Z30	Z37-39		
	T01	CRN (TO)	0	0	0		
	T02	CRN (X-80)	40	X-160	40		
Stickstoff-	T03	CRN (X-40)	40	X-120	40		
reaktionskurve	T04	CRN (X)	40	X-80	40		
	T05	CRN (X+40)	40	X-40	40		
	Т06	CRN (X+80)	40	х	40		
Eco	T07	X-40 Bestockung	0	X-80	40		
	T08	X-40 Qualität	40	X-80	0		
	Т09	X-40 Veteilt	27	X-93	27		
Clim	T10	Sicher-Qualität	(X-40)/2	(X-40)/2	40		
	T11	Sicher	X/2	X/2	0		
	T12	Steuerung CHN Ernte	Nach Em	ls CHN			
	T13	Gabe bei jedem Regen	Gabe bei jedem Regen*				

^{*} Eine Stickstoffrücklage (MER) von 40 kg N/ha ist für die Qualitätsgabe (vorgesehen etwa zum Stadium Z39 bei Regenfällen) zurückzuhalten.

Die restliche Düngermenge (Gesamtdüngermenge (DT) – MER) wird in vier gleiche Teile aufgeteilt (DT-MER)/4(DT-MER)/4.

Die Ausbringung erfolgt, wenn in den nächsten sieben Tagen 20 mm Niederschlag zu erwarten sind (basierend auf Multi-Modell-Prognosen).

→Erfolgte Stickstoffgaben

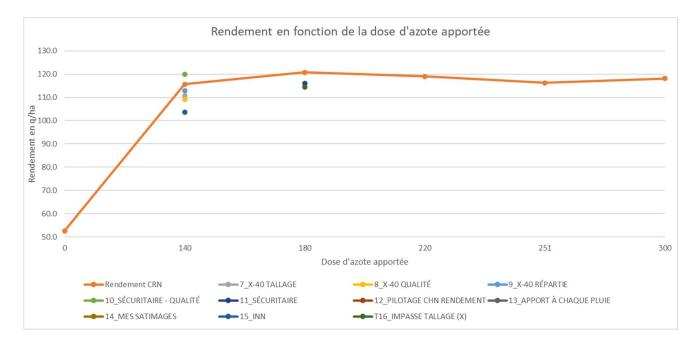
	Tab	leau d	es app	orts ré	alisés			
	E:	ssai 17Az	oclime, B	ollwiller, 2	2024			
(Dose X calculée = 180)								
Libellé de la modalité	Numéro d'apport	Date d'apport	Stade d'apport	Dose N par	Dose totale	Forme	Dose prévue par	

Libellé de la modalité	Numéro	Date	Stade		Dose totale	Forme	Dose prévue par
	d'apport	d'apport	d'apport	apport	apportée		rapport à X
T01_CRN(T0N)		0.4.64	70.4	40	0		40
	1	21-févr.	Z21	40			40
T03_CRN(X-40)	2	12-mars	Z30	60	140	AMMONITRATE 33.5	X-160
	3	29-avr.	Z37-39	40			40
To 4 OF 1/10	1	21-févr.	Z21	40			40
T04_CRN(X)	2	12-mars	Z30	100	180	AMMONITRATE 33.5	X-120
	3	29-avr.	Z37-39	40			40
	1	21-févr.	Z37-39	40			40
T05_CRN(X+40)	2	12-mars	Z30	140	220	AMMONITRATE 33.5	X-80
	3	29-avr.	Z 21	40			40
	1	21-févr.	Z 21	40			40
T06_CRN(X+80)	2	12-mars	Z30	171	251	AMMONITRATE 33.5	X-40
	3	29-avr.	Z37-39	40			40
	1	21-févr.	Z 21	40			40
T50_CRN(X+120)	2	12-mars	Z30	220	300	AMMONITRATE 33.5	X
	3	29-avr.	Z37-39	40			40
T07 X-40 TALLAGE	1	12-mars	Z30	100	140	AMMONITRATE 33.5	X-80
	2	29-avr.	Z37-39	40			40
T08_X-40 QUALITÉ	1	21-févr.	Z 21	40	140 AMMONITRA	AMMONITRATE 33.5	40
100_X 10 Q0/12112	2	12-mars	Z30	100	110	7 WWW.OTHTTOTIE GO.G	X-80
	1	21-févr.	Z 21	27			27
T09_X-40 RÉPARTIE	2	12-mars	Z30	87	141	AMMONITRATE 33.5	X-90
	3	29-avr.	Z37-39	27			27
	1	21-févr.	Z 21	70		1/2(X-40)	
T10_SÉCURITAIRE - QUALITÉ	2	12-mars	Z30	70	180 AMMONITRATE 33.5		1/2(X-40)
	3	29-avr.	Z37-39	40			40
T11_SÉCURITAIRE	1	21-févr.	Z 21	90	180 AMMONITRATE 33.5	1/2X	
TTI_GEOGRITAIRE	2	12-mars	Z30	90	100	AMMONITORIE 33.3	1/2X
	1	21-févr.	Z21-25	30			
T12_PILOTAGE CHN RENDEMENT	2	12-avr.	Z32-33	35	95	AMMONITRATE 33.5	
	3	29-avr.	Z37-39	30			
	1	21-févr.	Z21-25	35			1/4(X-40)
T13_APPORT À CHAQUE PLUIE	2	15-mars	Z30	35	145	AMMONITRATE 33.5	1/4(X-40)
110_ACFORTA OTAQUE PEUIE	3	16-avr.	Z33	35	AIVIIVIONTRATE 33.5		1/4(X-40)
	4	29-avr.	Z37-39	40			40

→ Anmerkungen:

- Die Reaktionskurve ist gegenüber der Protokollanforderung um 40Kg/ha verschoben. Sie beginnt bei X-40 und endet bei X+120 aufgrund eines Fehlers des Versuchsleiters.
- Die für die Regenvariante (T13) vorgesehenen Gaben konnten aufgrund des schnell fortschreitenden Stadiums nicht vollständig durchgeführt werden. Es fehlt eine Gabe von 35U. Die Gesamtdosis beträgt daher 145 Kg/ha

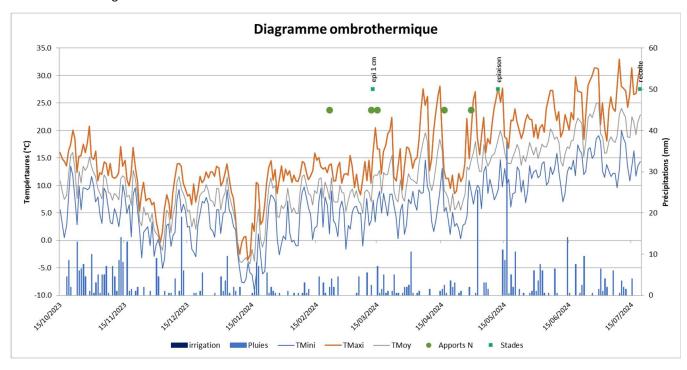
\rightarrow Messungen


	Art der Intervention	Anmerkung	Vorgehensweise	Modalität	
Herbst	Bodenanalyse	* Komplett für 1 Bodenhorizont * Code AUREA : TACN		Eine Messung für den Versuch	
	Messung von APM, ABM und Feuchtigkeit	auf 0-20 oder 0-30 cm, codes APM001, ABM001 et HUM001		Eine Messung für den Versuch	
Winterende, (Bestockung)	Mineralstickstoffprofil		M.O. n°8	Eine Messung pro Block	
	Biomasse pro Flächeneinheit N-Gehalt Dumas	vgl. Absatz 4	M.O. 0185	T12	
Schossen	Biomasse pro Flächeneinheit N-Gehalt Dumas	vgl. Absatz 4	M.O. 0185	T4 et T12	
(Z32-Z39)	Ähre 1 cm-Stadium - Ährenschieben		M.O. 0182	Eine Messung für den Versuch	
	Mineralstickstoffprofil	vgl. Absatz 4	M.O. n°8	T4 et T12	
Blühte (Z65)	Biomasse pro Flächeneinheit N-Gehalt Dumas	vgl. Absatz 4	M.O. 0185	T4 et T12	
	Ährendichte		M.O. 0184	Alle Modalitäten	
	Mineralstickstoffprofil	vgl. Absatz 4	M.O. n°8	T1, T4 et T12	
	%N Stroh	vgl. Absatz 4	M.O. 0185		
	%N Korn	Eine Messung pro Mikroparzelle	M.O. 0185	Alle Modalitäten	
	Verhältnis G/P	vgl. Absatz 4	M.O. 0185		
Ernte	TKG	Eine Messung pro Mikroparzelle	M.O. 0189		
	Maschinenernte	Eine Messung pro Mikroparzelle			
_	Proteingehalt %	Eine Messung pro Mikroparzelle			

Alle Ergebnisse und Messungen sind in der Versuchsakte Nr. 157831 verfügbar.

→Erste Ergebnisse

Modalité	Rendement à 15%	Groupes homogènes	Densité d'épis	H2O du grain à la récolte	Rapport Grain/paille	PMG	Poids spécifique	Teneur en protéines (%)
T04_CRN(X)	120.7	a	606	10.9	0.97	43.8	77.5	11.6
T10_SÉCURITAIRE - QUALITÉ	119.9	a	635	10.6	0.84	43.5	77.5	11.3
T05_CRN(X+40)	118.9	ab	649	10.9	0.89	42.9	77.7	12.0
T50_CRN(X+120)	118.1	ab	633	10.6	0.87	41.2	77.4	12.4
T06_CRN(X+80)	116.3	abc	653	10.8	0.83	42.2	77.5	12.3
T13_APPORT À CHAQUE PLUIE	116.1	abc	524	10.9	0.96	45.7	77.0	10.6
T11_SÉCURITAIRE	115.9	abc	646	11.0	0.82	42.8	76.9	10.7
T03_CRN(X-40)	115.6	abc	545	10.9	0.97	45.2	77.1	10.7
T09_X-40 RÉPARTIE	112.8	abc	576	10.9	0.90	43.6	76.7	10.5
T07_X-40 TALLAGE	110.7	.bcd	514	10.8	0.95	44.7	76.7	10.8
T08_X-40 QUALITÉ	109.1	cd	588	10.9	0.90	43.8	75.1	10.0
T12_PILOTAGE CHN RENDEMENT	98.4	e.	445	11.1	0.93	45.3	75.6	10.0
T01_CRN(T0N)	52.7	f	340	10.9	0.93	42.3	74.4	8.6
Etr	3.86							
Min	52.7		340	10.6	0.82	41.2	74.4	8.6
Max	120.7		653	11.1	0.97	45.7	77.7	12.4
Moyenne	109.9		566	10.8	0.90	43.6	76.7	10.9



Die Reaktionskurve auf Stickstoff ist zufriedenstellend. Die im Vorfeld berechnete Bilanzdosis war richtig.

→Gültigkeit des Versuchs

- Begrenzende Faktoren: Es gibt keinen biotischen oder abiotischen begrenzenden Faktor.
- Aussagekraft des Versuchs: L'essai est représentatif de l'année. Les apports réalisés ont été bien valorisés par les nombreuses pluies au cours de la saison. Les rendements sont très bons pour l'année et en comparaison des rendements réalisés dans la région. L'avancée rapide des stades n'a pas permis de réaliser l'intégralité des apports de la modalité pluie avant l'apport des 40Kg/ha mis en réserve
- Der Versuch ist repräsentativ für das Jahr. Die realisierten Stickstoffgaben wurden durch die zahlreichen Regenfälle im Laufe der Saison gut verwertet. Die Erträge sind für das Jahr und im Vergleich zu den in der Region erzielten Erträgen sehr gut. Durch die schnelle Entwicklung der Kultur war es nicht möglich, alle Gaben der zu tätigen.
- Wettergrafik :

→ Ausblick/Entwicklung

Der Versuch wird 2025 im selben Sektor wiederholt und in eine nationale Zusammenfassung von Arvalis einfließen.