

Strategien zur Steuerung der Stickstoffdüngung im Hinblick auf das klimatische Risiko einer Frühjahrstrockenheit und den wirtschaftlichen Kontext der Düngemittelpreise.

Erscheinungsdatum: 25/02/2025

Autor: Thomas MUNSCH

Aus dem Französischen übersetzt von:

Johanna Bodendörfer

> 17 AzoClimE 2024 Sand n°157834

→Kontext

Die Niederschläge während der Düngeperiode von Weizen werden immer unvorhersehbarer, und die Sorge, keine günstigen Bedingungen zu finden, veranlasst einige Landwirte dazu, weniger zu splitten und die Düngung stark vorzuverlegen. Die Auswirkungen dieser sicherheitsorientierten Strategien auf die Effizienz der Stickstoffnutzung sind weitgehend bekannt und haben uns in der Vergangenheit dazu veranlasst, eine stärkere und spätere Aufteilung zu empfehlen. Diese historischen Schlussfolgerungen wurden jedoch in Kontexten gezogen, in denen die Frühjahrsniederschläge nur wenig limitierend waren. Längere Trockenperioden im Frühjahr mit vereinzelten Regenfällen oder eine Konzentration der Niederschläge auf den Herbst scheinen jedoch ein zunehmend übliches Klima darzustellen.

Jüngste Studien, die die Herausforderungen bei der vollständigen Steuerung mit dem Tool CHN-conduite untersuchen, zeigen, dass ein gutes Management des Klimarisikos ein entscheidender Erfolgsfaktor für eine auf spätere Teilgaben basierende Strategie ist – und dass dieses Risikomanagement regelmäßig an seine Grenzen stößt. Die Wahl der Risikoschwelle ist somit ausschlaggebend für den Erfolg der Strategie, und das Tool CHN-conduite reagiert sehr sensibel darauf.

Vor dem Hintergrund des aktuellen Klimas und um sich besser und schneller an zukünftige Bedingungen anpassen zu können, erscheint es notwendig, unsere Referenzen hinsichtlich der Auswirkungen (i) vorgezogener Gaben und (ii) späterer Maßnahmen (unter guten sowie ungünstigen Bedingungen für die Nährstoffverwertung) zu aktualisieren. Ziel ist es, optimierte Risikoschwellen auf Parzellenebene festlegen zu können.

Darüber hinaus könnten die wirtschaftlichen Rahmenbedingungen (volatile Preise für Dünger und Getreide) sowie gesetzliche Vorgaben (Green Deal) uns dazu veranlassen, die Stickstoffgaben auf bestimmten Weizenflächen zu reduzieren. Die Herausforderungen im Zusammenhang mit reduzierten Stickstoffgaben sind durch zahlreiche historische Versuche mit Ertragsreaktionskurven auf Stickstoff bekannt. Die getesteten Varianten beruhen jedoch fast ausschließlich auf einer Reduktion der Gabe zum Stadium "1 cm Ährchen". Heute ist es notwendig, die Auswirkungen einer Reduktion der Düngemenge in verschiedenen phänologischen Stadien zu bewerten, um das/die Stadium/ien zu identifizieren, das/die am besten geeignet ist/sind, eine reduzierte Stickstoffgabe im jeweiligen bodenklimatischen Kontext zu verkraften.

* (Tool von Arvalis zur dynamischen Modellierung des Stickstoffbedarfs von Weizen)

→Ziel

- Gewinnung von Daten zur Effizienz der Stickstoffnutzung unter verschiedenen Fraktionierungskontexten und unterschiedlicher Exposition gegenüber Klimarisiken.
- Verbesserung der Schätzung der Stickstoffaufnahme durch die Kultur mit CHN
- Vorschlag eines an die Parzelle angepassten Klimarisikomanagements im Tool zur integralen Steuerung der Stickstoffdüngung CHN-conduite

- Fortsetzung der Bewertung des CHN-conduite-Tools
- Verständnis der Wechselwirkungen zwischen phänologischem Stadium, das eine Dosisreduktion verträgt, und dem Bodenklima

→Beschreibung des Versuchsfeldes

- Nicht bewässert um den Einfluss des Klimas auf die Stickstoffverwertung nicht zu beeinflussen.

- Petite région : Plaine de l'Ill 67

- Boden: AL0036002: Tiefgründiger toniger Lösslehm

 - Versuchsanordnung: Versuch in 4 Blöcken, verteilt auf dem Feld des Landwirts. Microparzlle 10m x 2m (20m²)

Sorte : DiamentoVorfrucht : Kartoffel

- Nmin-Gehalt zum Vegetationsbeginn: 156 Kg/ha

→Getestete Modalitäten

Liste der Versuchsmodalitäten 17AZOCLIME 2024

			Stadium und Dosierungen der Stickstoffgabe				
Modul			Z21	Z30	Z37-39		
	T01	CRN (TO)	0	0	0		
	T02	CRN (X-80)	40	X-160	40		
Stickstoff- reaktionskurve	T03	CRN (X-40)	40	X-120	40		
	T04	CRN (X)	40	X-80	40		
	T05	CRN (X+40)	40	X-40	40		
	Т06	CRN (X+80)	40	х	40		
Eco	T07	X-40 Bestockung	0	X-80	40		
	Т08	X-40 Qualität	40	X-80	0		
	Т09	X-40 Veteilt	27	X-93	27		
	T10	Sicher-Qualität	(X-40)/2	(X-40)/2	40		
Clim	T11	Sicher	X/2	X/2	0		
	T12	Steuerung CHN Ernte	Nach Empfehlungen des Tools CH		ls CHN		
	T13	Gabe bei jedem Regen	Gal	*			

^{*} Eine Stickstoffrücklage (MER) von 40 kg N/ha ist für die Qualitätsgabe (vorgesehen etwa zum Stadium Z39 bei Regenfällen) zurückzuhalten.

Die restliche Düngermenge (Gesamtdüngermenge (DT) – MER) wird in vier gleiche Teile aufgeteilt (DT-MER)/4(DT-MER)/4.

Die Ausbringung erfolgt, wenn in den nächsten sieben Tagen 20 mm Niederschlag zu erwarten sind (basierend auf Multi-Modell-Prognosen).

\rightarrow Erfolgte Stickstoffgaben :

Tableau des apports réalisés

Essai 17Azoclime, Sand, 2024

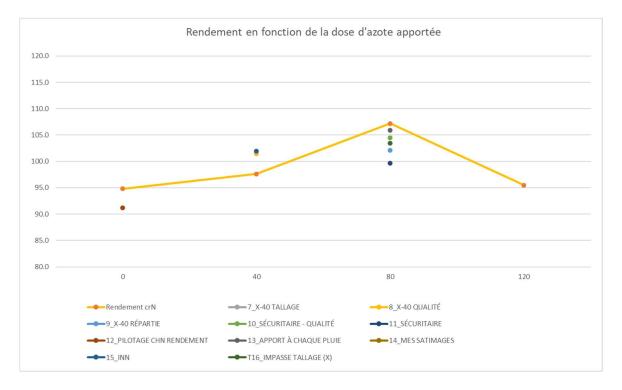
(Dose X calculée = 80)

(DOSE A CAICUIEE - OU)								
Libellé de la modalité	Numéro d'apport	Date d'apport	Stade d'apport	Dose N par apport	Dose totale apportée	Forme	Dose prévue par rapport à X	
T01_CRN(T0N)					0			
	1	28-févr.	Z21	0	0		40	
T02_CRN(X-80)	2	14-mars	Z30	0		AMMONITRATE 33.5	X-160	
	3	22-avr.	Z37-39	0			40	
	1	28-févr.	Z21	0	40		40	
T03_CRN(X-40)	2	14-mars	Z30	0		AMMONITRATE 33.5	X-120	
	3	22-avr.	Z37-39	40			40	
	1	28-févr.	Z21	0		AMMONITRATE 33.5	40	
T04_CRN(X)	2	14-mars	Z30	40	80		X-80	
	3	22-avr.	Z37-39	40			40	
	1	28-févr.	Z21	0			40	
T05_CRN(X+40)	2	14-mars	Z30	80	120	AMMONITRATE 33.5	X-40	
	3	22-avr.	Z37-39	40			40	
	1	28-févr.	Z21	0	160	AMMONITRATE 33.5	40	
T06_CRN(X+80)	2	14-mars	Z30	120			Х	
	3	22-avr.	Z37-39	40			40	
	1	28-févr.	Z21	0	40	AMMONITRATE 33.5	0	
T07_X-40 TALLAGE	2	14-mars	Z30	0			X-80	
	3	22-avr.	Z37-39	40			40	
	1	28-févr.	Z21	40		AMMONITRATE 33.5	40	
T08_X-40 QUALITÉ	2	14-mars	Z30	0	40		X-80	
	3	22-avr.	Z37-39	0			0	
	1	28-févr.	Z21	27		27		
T09_X-40 RÉPARTIE	2	14-mars	Z30	26	80	AMMONITRATE 33.5	X-90	
	3	22-avr.	Z37-39	27			27	
	1	28-févr.	Z21	20			1/2(X-40)	
T10_SÉCURITAIRE - QUALITÉ	2	14-mars	Z30	20	80	AMMONITRATE 33.5	1/2(X-40)	
	3	22-avr.	Z37-39	40			40	
T11 SÉCUDITAIDE	1	28-févr.	Z21	40	90 AMMONUTRATE 32.5	1/2X		
T11_SÉCURITAIRE	2	14-mars	Z30	40	80	AMMONITRATE 33.5	1/2X	
T12_Pilotage CHN rendement					0			
	1	14-mars	Z30	20	80 AMMONITRATE 33.5		1/2(X-40)	
T13_APPORT À CHAQUE PLUIE	2	16-avr.	Z33	20			1/2(X-40)	
	3	22-avr.	Z39	40			40	

Da die berechnete Bilanzdüngermenge sehr gering ausfiel, mussten die Düngergaben an die Anforderungen des Versuchsprotokolls angepasst werden.

Eine Schwefeldüngung wurde auf die gesamte Versuchsfläche ausgebracht.

\rightarrow Messungen:

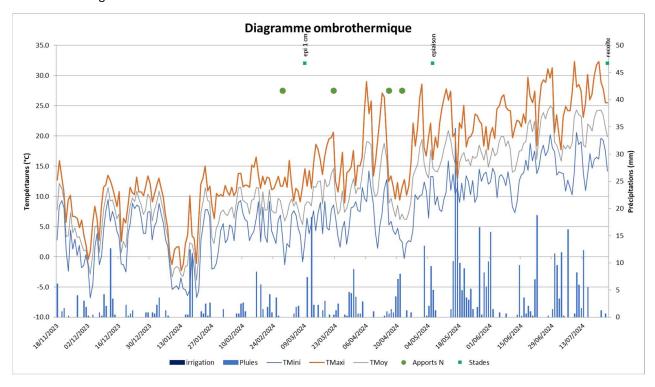

	Art der Intervention	Anmerkung	Vorgehensweise	Modalität	
Herbst	Bodenanalyse	* Komplett für 1 Bodenhorizont * Code AUREA : TACN		Eine Messung für den Versuch	
	Messung von APM, ABM und Feuchtigkeit	auf 0-20 oder 0-30 cm, codes APM001, ABM001 et HUM001		Eine Messung für den Versuch	
Winterende, (Bestockung)	Mineralstickstoffprofil		M.O. n°8	Eine Messung pro Block	
	Biomasse pro Flächeneinheit N-Gehalt Dumas	vgl. Absatz 4	M.O. 0185	T12	
Schossen	Biomasse pro Flächeneinheit N-Gehalt Dumas	vgl. Absatz 4	M.O. 0185	T4 et T12	
(Z32-Z39)	Ähre 1 cm-Stadium - Ährenschieben		M.O. 0182	Eine Messung für den Versuch	
	Mineralstickstoffprofil	vgl. Absatz 4	M.O. n°8	T4 et T12	
Blühte (Z65)	Biomasse pro Flächeneinheit N-Gehalt Dumas	vgl. Absatz 4	M.O. 0185	T4 et T12	
	Ährendichte		M.O. 0184	Alle Modalitäten	
	Mineralstickstoffprofil	vgl. Absatz 4	M.O. n°8	T1, T4 et T12	
Ernte	%N Stroh	vgl. Absatz 4	M.O. 0185		
	%N Korn	Eine Messung pro Mikroparzelle	M.O. 0185		
	Verhältnis G/P	vgl. Absatz 4	M.O. 0185		
	TKG	Eine Messung pro Mikroparzelle	M.O. 0189	Alle Modalitäten	
	Maschinenernte	Eine Messung pro Mikroparzelle			
	Proteingehalt %	Eine Messung pro Mikroparzelle			

Alle Ergebnisse und Messungen sind in der Versuchsakte Nr. 157834 verfügbar.

→Erste Ergebnisse

Modalité	Rendement à 15%	Groupes homogènes	H2O du grain à la récolte	Densité d'épis	Rapport grains paille	PMG 15 %	Poids spécifique	Teneur en protéines (%)
T04_CRN(X)	107.2	a	17.3	524.5	0.94	48.4	71.7	12.3
T13_APPORT À CHAQUE PLUIE	105.9	ab	17.4	549.4	0.92	47.8	71.3	12.3
T10_SÉCURITAIRE - QUALITÉ	104.5	abc.	17.2	554.7	0.86	47.0	71.8	12.2
T09_X-40 RÉPARTIE	102.1	abcd	17.2	649.3	0.91	46.9	71.4	12.2
T08_X-40 QUALITÉ	101.6	abcd	17.7	540.9	0.84	49.4	71.1	11.7
T07_X-40 TALLAGE	101.5	abcd	17.7	543.1	0.94	49.0	71.8	12.4
T11_SÉCURITAIRE	99.7	abcd	17.7	594.5	0.87	46.8	70.7	12.2
T03_CRN(X-40)	97.6	abcd	17.5	522.3	0.94	49.7	71.7	12.2
T05_CRN(X+40)	96.5	abcd	17.6	563.4	0.89	44.1	70.4	12.4
T01_CRN(T0N)	94.8	.bcd	17.4	519.6	0.86	50.2	71.5	11.8
T06_CRN(X+80)	93.0	cd	17.7	314.0	0.88	42.6	69.6	12.6
T02_CRN(X-80)	92.7	cd	17.4	532.6	0.84	50.3	71.2	11.9
T12_Pilotage CHN rendement	91.2	d	17.4	519.9	0.84	51.1	71.3	12.0
Etr	4.92							
Min	91.2		17.2	314.0	0.84	42.6	69.6	11.7
Max	107.2		17.7	649.3	0.94	51.1	71.8	12.6
Moyenne	99.1		17.5	537.6	0.89	48.3	71.2	12.1

Der Ertrag ist bei der Bilanzdosis (80U) am höchsten. Die im Vorfeld berechnete Dosis X war also richtig.



→Gültigkeit des Versuchs

– Begrenzende Faktoren: Es gibt keinen biotischen oder abiotischen begrenzenden Faktor.

Aussagekraft des Versuchs: Da der Reststickstoff (Nmin) am Ende des Winters sehr hoch war, fiel die berechnete Düngermenge X mit 80 kg/ha gering aus. Die Stickstoffgaben mussten daher an diesen Kontext angepasst werden. Der untere Bereich der Ertragskurve (X-80) entspricht der unbehandelten Kontrolle (ohne Düngung). Bei der Variante mit Berücksichtigung von Niederschlägen wurde die nach der Rückstellung verbliebene Düngermenge in lediglich Gaben 20 kg/ha aufgeteilt. zu je Die Düngergaben wurden dank der regelmäßigen Niederschläge während der gesamten Vegetationsperiode sehr verwertet. Die Erträge waren sehr gut, trotz eines starken Vorkommens von Ackerwinde gegen Ende des Zyklus, das jedoch die Ernte des Versuchs nicht beeinträchtigte.

- Wettergrafik:

→ - Ausblick/Entwicklung

Der Versuch wird 2025 im selben Gebiet fortgesetzt, wobei darauf geachtet wird, eine Parzelle mit geringeren N-Rückständen zu wählen, um die geplanten Düngungsstrategien anwenden zu können.